IPYNI HeHaNpaBJIEHHBIX CTEpPXKHEH, KOTOpHIE BhIBE-
nensl Hamu B umcie 206 (11 U3 HUX He MOTYT OBITh
HOpPOEKTUPYEMBI IO HOPMAJIH K OCH CTEPXKHS). 3aMeTuM,
YTO IPH MPOEKTHPOBAHHH IO HOPMAJIU K OCH CTEPKHS
orbpoienuble 3amop3aeBbiM U Iansgpckum 18 3m-
aHTHOMOPGHBIX 4-MepHBIX CTEPXKHEBBIX I'PYNI NAIOT
TpexMepHble 1IyOHUKOBCKHE TPYNNbl, BXOISILUE B
coctaB 1651. Tabnuupl Bcex 4-MEpHBIX CTEpXHEBBIX
rpymnn CUMMETPHM BBHIY MX [POMO3IKOCTH 3[€Chb HE
npusoastcs. [Ipu npoekTHpOBaHUH I'PyNN CHMMETPUH
4-MepHBIX HEHAIlpaBJIEHHBIX CTEpPXXHEH BIOJIb OCH
CTepXHs, KOMOUHUPYA 00a onucaHHbIe B § | MpUHLKIA
IPOEKTHPOBAaHUA, Mbl MOXEM IIOJYYHTb 3-MEpHBIE
TOYEUHBIE TPYIIIbI ABYXKPATHOM aHTUCUMMETPHH.
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For use in subsequent parts of this series, some main concepts of mathematical crystallography (arith-
metic crystal class, geometric crystal class, lattice, Bravais type, crystal family, holohedry, crystal system)

are defined algebraically.

In order to deal with n-dimensional crystallography,
one first has to discuss how the concepts, familiar
from 2- and 3-dimensional space, can be described
mathematically in such a way that they can be carried
over to higher dimensions. For us this task arose when
— some time ago — we started to investigate crystallo-
graphic groups of 4-dimensional space; in particular
we wanted to use formulations suitable for the appli-
cations of group theoretical computer programs (cf.

Felsch & Neubiiser, 1963). In this first paper we give
such formulations in an algebraic way. We do not claim
that these formulations are new. The methods of our
investigations will be described in a second paper, a
third one will contain some of the results.

Although its main purpose is to prepare the ground
for these investigations, the formulations in this paper
may also help towards a better understanding of some
problems of 3-dimensional crystallography. As an ex-
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amplewe mention the old discussion as to whether rhom-
bohedral and hexagonal crystal classes should belong
to one crystal system or to two.

1. Some remarks on the literature

Crystallography in spaces of higher dimensions has
been investigated previously. Some of the literature on
general mathematical crystallography is mentioned by
Burckhardt (1966).

Hermann (1949) described the crystallographic sym-
metry operations in R, completely. He also dealt with
lattices and point groups (¢f. Hermann, 1951).

Hurley (1951) determined the (geometric) crystal
classes in Ry, using results of Goursat (1889). A few
accidental errors in his list have since been corrected
(¢f. Hurley, Neubiiser & Wondratschek, 1967).

Special cases of 4-dimensional crystal classes are the
3-dimensional black-white crystal classes (¢f. Heesch.
1930; Niggli & Wondratschek, 1960). Swaryczewski
(1967) investigated some other special cases.

Mackay & Pawley (1963) described Bravais lattices
in R,. Their list has been extended by Zamorzayev &
Tsekinovsky (1968) as well as by Kuntsevich & Belov
(1968, 1970) and Belov & Kuntsevich (1969a,b). All
these approaches on the classification of lattices were
geometric. No proof of completeness was given.

The study of the arithmetic classification of 4-dimen-
sional symmetry groups has been started only recently.
Dade (1965) gave a complete list of representatives of
the maximal finite integral 4 x 4-matrix groups classi-
fied up to integral equivalence, i.e. in crystallographic
terms, he derived those arithmetic crystal classes, which
belong to the Bravais lattices of highest symmetry.
Using Dade’s result, Biillow (1967) determined all arith-
metic crystal classes of R, (¢f. also Biilow & Neubiiser,
1970). At the same time Janssen, Janner & Ascher
(1969) discussed the (3,1)-reducible arithmetic classes
under the name of space-time groups. Some errors in
their original computation were eliminated using Bii-
low’s results and a complete list of (3,1)-reducible arith-
metic classes was published by Janssen (1967) (as a
technical report) and by Janssen (1969).

Fast & Janssen (1968) published a list of space groups
belonging to these crystal classes. However, they use
a weaker form of equivalence than usual so that some
of the groups of their list may still be crystallographi-
cally equivalent. There exists a computer program by
Brown (1969), following an algorithm of Zassenhaus
(1948), to derive the space groups classified in the
crystallographic sense.

2. The concepts

The concepts that are used to describe crystallographic
symmetry can be defined in several different ways that
can be shown to correspond to each other in a simple
way. We give here definitions that are useful for the
description of our computations. For these it is prac-
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tical to consider the #-dimensional Euclidian space R,
as a vector space® (of vectors ‘located’ at the origin).

2-1. Definition: Two finite groups ¢ and o of inte-
gral (unimodular) # x » matrices are called arithmeti-
cally equivalent if there exists an integral unimodular
axn matrix T such that T-19T=s¢. An arithmetic
crystal class in Ry can be defined as an equivalence class
of finite groups of integral (unimodular) # x # matrices
with respect to this arithmetic equivalence. The (com-
mon) order of the groups in the class is called the
order of the class.

This concept should be distinguished from the fol-
lowing more familiar one:

2-2. Definition: Two finite groups ¢ and # of inte-
gral (unimodular) »xn matrices are called geometri-
cally equivalent if there exists a rational non-singular
nxn matrix T such that T-19T=3. A (geometric)
crystal class in Ry can be defined as an equivalence
class of finite groups of integral (unimodular) nxn
matrices with respect to this geometric equivalence.
The (common) order of the groups in this class is called
the order of the class.

Note that a geometric crystal class consists of full
arithmetic crystal classes, so that we can speak of the
arithmetic classes belonging to a certain geometric one.

2:3. Definition: A lattice (vector lattice) L in Ry is a
set of vectors which consists of all integral linear com-
binations of » linearly independent vectors. Any set B
of n linearly independent vectors for which L is the set
of all integral linear combinations of vectors of B is
called a lattice basis of L.

2:4. Definition: The Bravais groupt & (L, B) of a
(vector) lattice L with respect to the lattice basis B is
the group of all matrices representing, with respect to B,
motions of R, that leave the origin fixed and map L
onto itself. An arithmetic crystal class is called a Bravais
class if one (and hence any) of its matrix groups is the
Bravais group of some lattice L with respect to some
lattice basis of L.

2:5. Definition: Two lattices L and L’ in R, belong
to the same Bravais type if their Bravais groups, with
respect to some (and hence any) pair of lattice bases
of L and L’, are arithmetically equivalent matrix
groups.

We see from 2-4 and 2-5 that the Bravais types of
lattices in R, and the Bravais classes are in a natural
1-1 correspondence. We shall refer to this correspon-
dence when we say that a Bravais class defines a Bra-
vais type or vice versa.

* The term is used in the mathematical sense; cf. e.g.
Lang (1967).

T With this term we follow Zassenhaus (1966). We avoid the
terms holohedry and holohedral arithmetic class in this con-
text, which are sometimes used to denote what we call Bravais
group and Bravais class respectively. The term ‘holohedral’
really is a morphological one, which, therefore should be
reserved for geometric equivalence classes in an algebraic
set-up.
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We want next to assign to each of the other arith-
metic classes a certain Bravais type. This is done by
the following definition:

2-6. Definition: An arithmetic crystal class C belongs
to the Bravais type defined by the Bravais class H if
each matrix group in C is a subgroup of a group in H
but not a subgroup of a group in another Bravais class
of smaller order than H.

As by Maschke’s construction (cf., e.g. Speiser (1956)
theorem 132) each finite group of integral matrices
may be considered as representing a group of motions
of some lattice L with respect to some lattice basis B
of L, each arithmetic crystal class belongs to some
Bravais type. By another characterization of Bravais
classes, given in the second part of this series, it can
be seen that each arithmetic class belongs to only one
Bravais class.

The remark following definition 2-2 says that the
set 4 of all arithmetic crystal classes is subdivided into
the subsets of those belonging to the same geometric
crystal class. On the other hand this set 4 is also sub-
divided into the subsets of those belonging to the same
Bravais type. We now subdivide the set 4 in such a way
that each subset in the new subdivision

(i) contains with each arithmetic class all those be-
longing to the same geometric crystal class,
(ii) contains with each arithmetic class all those be-
longing to the same Bravais type,
(iii) is the smallest possible satisfying conditions (i)
and (ii).

2-7. Definition: The subsets of thesubdivision just
described are called crystal families.

By its construction we see that a crystal family con-
tains full geometric crystal classes. Also with one it
contains all arithmetic classes belonging to a Bravais
type, so that a certain Bravais type may be said to be-
long to one and only one crystal family in a well de-

Crystal
family

Crystal
system
—
—
—~—
—
Geometric
crystal Bravais
class type
Arithmetic
crystal
class

Fig. 1. Relations between main crystallographic concepts.
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fined way. Hence the families provide a natural order-
ing of the Bravais types.*

The concept ‘family’ introduces an ordering of the
arithmetic classes, which respects both the conse-
quences of periodicity (the symmetry of lattices) and
the morphologic classification (geometric classes). In
R; e.g. all trigonal and hexagonal arithmetic classes
together form a single family.

Note that we completely avoid the familiar term
Bravais lattice, because it is often used to mean a single
lattice as well as the class of all lattices of a Bravais type
in the above defined sense. However, this distinction
of classes of equivalent objects and of these objects is
essential for a good understanding of crystallographic
concepts and in particular for our computations.

In 3-dimensional crystallography the crystal classes
are conventionally not distributed into families but
into crystal systems. To formulate this concept also in
an algebraic way, we first define:

2-8. Definition: A geometric crystal class is called
holohedral or a holohedry if among the arithmetic crys-
tal classes belonging to it there is at least one Bravais
class.

Note that in contrast to the situation with Bravais
classes not all matrix groups belonging to a holohedral
class need be Bravais groups.

2:9. Definition: Each holohedral crystal class H deter-
mines a crystal system. We say that a (geometric) crystal
class C belongs to the crystal system of H if each group
of C is a subgroup of some group of H, but not a sub-
group of a group of another holohedral geometric class
of smaller order.

While by this definition each geometric crystal class
and hence each arithmetic crystal class is attributed to
exactly one crystal system, the situation is more com-
plicated for Bravais types. Conventionally a Bravais
type B is attributed to a crystal system S if one of the
arithmetic crystal classes belonging to B belongs to S.
However, then the same Bravais type may be attributed
to more than one crystal system. This does not happen
in R,, and only once in R;} but is more common in
R, for n>3. We therefore use the concept of crystal
system only to order the geometric crystal classes for
which purpose the concept of the system is natural.

The relations between the main concepts used here
are illustrated by Fig. 1.

This work has been kindly supported by the Deut-
sche Forschungsgemeinschaft.

* To us this seems to be the main advantage of the concept
‘family’.

+ The ‘hexagonal Bravais lattice’ belongs to the trigonal as
well as to the hexagonal crystal system; the rhombohedral one
belongs to the trigonal system only.
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The mathematical background and the computing methods applied to the classification of lattices and
crystallographic groups of 4-dimensional space R4 are described.

This paper is a direct continuation of the preceding
one (Neubiiser, Wondratschek & Biilow, 1971) to which
we refer as I. We shall use the definitions explained
there. In this paper we describe the methods we used
to derive all Bravais types.of lattices of R, and to order
these, as well as the arithmetic and geometric classes, by
means of crystal families and crystal systems.

Our approach started from Biilow’s (1967; cf. also
Biilow & Neubiiser, 1970) determination of the 710
arithmetic crystal classes of R,, which has since been
reconfirmed.

1. The determination of the arithmetic classes of R,

The computation started from a result of Dade (1965).
He proved that the maximal finite groups of integral

4 x 4 matrices fall into 9 classes under transformation
with integral unimodular matrices and he determined
one group from each of these classes. We shall call
these 9 groups the Dade groups of R,. As each finite
integral 4 x4 matrix group is contained in a maximal
one, each arithmetic crystal class is represented by
at least one of the subgroups of the Dade groups. The
task of finding all arithmetic crystal classes can there-
fore be split into two steps:

(i) Find all subgroups of the 9 Dade groups.
(it) Classify the set, so obtained, under transforma-
tion with integral unimodular matrices.

The first step was performed using computer pro-
grams (Felsch & Neubiiser, 1963) that determine --
among other things — all subgroups of a group given



