
rpynn  HeHanpaBJIeHHBIX cTep:~He~, KOTOpBIe BBIBe- 
/IeHBI HaMI~ B qHcyle 206 (11 n3 HnX He MOFyT 6bITb 
npoeKTnpyeMt, i no HOpMamt r ocn cTep~Ha). 3aMeTnM, 
• ITO npn npoeKTnpoBaHnrI no HOpMaan r ocn cTep~Ha 
oT6pomenm, m 3aMop3aeBt, iM n FastapcrnM 18 an- 
anTnOMopqbm,ix 4-Mepn~,~x cTepz<nea~,IX rpynn  ~amT 
TpexMepHB~e my6Hrtro~c~ne rpynnbi,  Bxoaatttne 
COCTa~ 1651. Ta6strtm,~ Bcex 4-Mepm,~x cTep~HeBbIX 
Fpynn CI,IMMeTpI,II, I BBI'I~y I,IX FpOMO3)~KOCTI4 3~ecb He 
nptlBO)I~TC~I. Hpn  npoeKTnpoBaHnn rpynn  CHMMeTpnn 
4-MepHs~X sesanpaBJ~eHm,~x cTep~Hefi B~IOJ~B OCH 
cTep:~H~, rOU614HHpy~t o6a on~IcaHnb~e a § 1 npnnRi4na 
npoerTnpoBann~, MBI MO)I(eM no~IyqnTS 3-MepH~ie 
TOqeqHBIe rpynnb~ )IByxKpaTHO~ aHTI~CI4MMeTpHIt. 
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For use in subsequent parts of this series, some main concepts of mathematical crystallography (arith- 
metic crystal class, geometric crystal class, lattice, Bravais type, crystal family, holohedry, crystal system) 
are defined algebraically. 

In order to deal with n-dimensional crystallography, 
one first has to discuss how the concepts, familiar 
f rom 2- and 3-dimensional space, can be described 
mathematical ly  in such a way that  they can be carried 
over to higher dimensions. For  us this task arose when 
- some time ago - we started to investigate crystallo- 
graphic groups of  4-dimensional space; in part icular  
we wanted to use formulat ions suitable for the appli- 
cations of  group theoretical computer  programs (cf. 

Felsch & Neubfiser, 1963). In this first paper  we give 
such formulat ions in an algebraic way. We do not  claim 
that  these formulat ions are new. The methods of  our 
investigations will be described in a second paper,  a 
third one will contain some of  the results. 

Al though its main purpose is to prepare the ground 
for these investigations, the formulat ions in this paper  
may  also help towards a better unders tanding of  some 
problems of  3-dimensional crystal lography. As an ex- 
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ample we mention the old discussion as to whether rhom- 
bohedral and hexagonal crystal classes should belong 
to one crystal system or to two. 

1. Some remarks on the literature 

Crystallography in spaces of higher dimensions has 
been investigated previously. Some of the literature on 
general mathematical crystallography is mentioned by 
Burckhardt (1966). 

Hermann (1949) described the crystallographic sym- 
metry operations in Rn completely. He also dealt with 
lattices and point groups (cf. Hermann, 1951). 

Hurley (1951) determined the (geometric) crystal 
classes in R4, using results of Goursat (1889). A few 
accidental errors in his list have since been corrected 
(cfi Hurley, Neubfiser & Wondratschek, 1967). 

Special cases of 4-dimensional crystal classes are the 
3-dimensional black-white crystal classes (cfi Heesch. 
1930; Niggli & Wondratschek, 1960). Swaryczewski 
(1967) investigated some other special cases. 

Mackay & Pawley (1963) described Bravais lattices 
in R4. Their list has been extended by Zamorzayev & 
Tsekinovsky (1968) as well as by Kuntsevich & Belov 
(1968, 1970) and Belov & Kuntsevich (1969a,b). All 
these approaches on the classification of lattices were 
geometric. No proof of completeness was given. 

The study of the arithmetic classification of 4-dimen- 
sional symmetry groups has been started only recently. 
Dade (1965) gave a complete list of representatives of 
the maximal finite integral 4 × 4-matrix groups classi- 
fied up to integral equivalence, i.e. in crystallographic 
terms, he derived those arithmetic crystal classes, which 
belong to the Bravais lattices of highest symmetry. 
Using Dade's result, Btilow (1967) determined all arith- 
metic crystal classes of R4 (cfi also Billow & Neubtiser, 
1970). At the same time Janssen, Janner & Ascher 
(1969) discussed the (3,1)-reducible arithmetic classes 
under the name of space-time groups. Some errors in 
their original computation were eliminated using Bti- 
low's results and a complete list of (3,1)-reducible arith- 
metic classes was published by Janssen (1967) (as a 
technical report) and by Janssen (1969). 

Fast & Janssen (1968) published a list of space groups 
belonging to these crystal classes. However, they use 
a weaker form of equivalence than usual so that some 
of the groups of their list may still be crystallographi- 
cally equivalent. There exists a computer program by 
Brown (1969), following an algorithm of Zassenhaus 
(1948), to derive the space groups classified in the 
crystallographic sense. 

2. The concepts 

The concepts that are used to describe crystallographic 
symmetry can be defined in several different ways that 
can be shown to correspond to each other in a simple 
way. We give here definitions that are useful for the 
description of our computations. For these it is prac- 

tical to consider the n-dimensional Euclidian space Rn 
as a vector space* (of vectors 'located' at the origin). 

2.1. Definition: Two finite groups ff and ~o of inte- 
gral (unimodular) n x n matrices are called arithmeti- 
cally equivalent if there exists an integral unimodular 
n x n matrix T such that T-lffT=~(F. An arithmetic 
crystalclass in R,  can be defined as an equivalence class 
of finite groups or integral (unimodular) n x n matrices 
with respect to this arithmetic equivalence. The (com- 
mon) order of the groups in the class is called the 
order of the class. 

This concept should be distinguished from the fol- 
lowing more familiar one: 

2.2. Definition: Two finite groups f¢ and .g' of inte- 
gral (unimodular) n x n matrices are called geometri- 
cally equivalent if there exists a rational non-singular 
n x n matrix T such that T-lfYT=_~. A (geometric) 
crystal class in Rn can be defined as an equivalence 
class of finite groups of integral (unimodular) n x n 
matrices with respect to this geometric equivalence. 
The (common) order of the groups in this class is called 
the order of the class. 

Note that a geometric crystal class consists of full 
arithmetic crystal classes, so that we can speak of the 
arithmetic classes belonging to a certain geometric one. 

2.3. Definition: A lattice (vector lattice) L in R,  is a 
set of vectors which consists of all integral linear com- 
binations of n linearly independent vectors. Any set B 
of n linearly independent vectors for which L is the set 
of all integral linear combinations of vectors of B is 
called a lattice basis of L. 

2.4. Definition: The Bravais group• ~ (L, B) of a 
(vector) lattice L with respect to the lattice basis B is 
the group of all matrices representing, with respect to B, 
motions of R ,  that leave the origin fixed and map L 
onto itself. An arithmetic crystal class is called a Bravais 
class if one (and hence any) of its matrix groups is the 
Bravais group of some lattice L with respect to some 
lattice basis of L. 

2.5. Definition: Two lattices L and L '  in Rn belong 
to the same Bravais type if their Bravais groups, with 
respect to some (and hence any) pair of lattice bases 
of L and L' ,  are arithmetically equivalent matrix 
groups. 

We see from 2.4 and 2.5 that the Bravais types of 
lattices in Rn and the Bravais classes are in a natural 
1-1 correspondence. We shall refer to this correspon- 
dence when we say that a Bravais class defines a Bra- 
vais type or vice versa. 

* The term is used in the mathematical sense; cf e.g. 
Lang (1967). 

I" With this term we follow Zassenhaus (1966). We avoid the 
terms holohedry and holohedral arithmetic class in this con- 
text, which are sometimes used to denote what we call Bravais 
group and Bravais class respectively. The term 'holohedral' 
really is a morphological one, which, therefore should be 
reserved for geometric equivalence classes in an algebraic 
set-up. 
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We want next to assign to each of the other arith- 
metic classes a certain Bravais type. This is done by 
the following definition: 

2.6. Definition" An arithmetic crystal class C belongs 
to the Bravais type defined by the Bravais class H if 
each matrix group in C is a subgroup of a group in H 
but not a subgroup of a group in another Bravais class 
of smaller order than H. 

As by Maschke's construction (cf., e.g. Speiser (1956) 
theorem 132) each finite group of integral matrices 
may be considered as representing a group of motions 
of some lattice L with respect to some lattice basis B 
of L, each arithmetic crystal class belongs to some 
Bravais type. By another characterization of Bravais 
classes, given in the second part of this series, it can 
be seen that each arithmetic class belongs to only one 
Bravais class. 

The remark following definition 2.2 says that the 
set A__ of all arithmetic crystal classes is subdivided into 
the subsets of those belonging to the same geometric 
crystal class. On the other hand this set A is also sub- 
divided into the subsets of those belonging to the same 
Bravais type. We now subdivide the set A in such a way 
that each subset in the new subdivision 

(i) contains with each arithmetic class all those be- 
longing to the same geometric crystal class, 

(ii) contains with each arithmetic class all those be- 
longing to the same Bravais type, 

(iii) is the smallest possible satisfying conditions (i) 
and (ii). 

2.7. Definition" The subsets of the'subdivision just 
described are called crystal families. 

By its construction we see that a crystal family con- 
tains full geometric crystal classes. Also with one it 
contains all arithmetic classes belonging to a Bravais 
type, so that a certain Bravais type may be said to be- 
long to one and only one crystal family in a well de- 

Crystal [ 
family [ 

I CysYt¢ m [ 

crystal [ Bravais 
class • type 

Arithmetic 
crystal 

class 

Fig. 1. Relations between main crystallographic concepts. 

fined way. Hence the families provide a natural order- 
ing of the Bravais types.* 

The concept 'family' introduces an ordering of the 
arithmetic classes, which respects both the conse- 
quences of periodicity (the symmetry of lattices) and 
the morphologic classification (geometric classes). In 
R3 e.g. all trigonal and hexagonal arithmetic classes 
together form a single family. 

Note that we completely avoid the familiar term 
Bravais lattice, because it is often used to mean a single 
lattice as well as the class of all lattices of a Bravais type 
in the above defined sense. However, this distinction 
of classes of equivalent objects and of these objects is 
essential for a good understanding of crystallographic 
concepts and in particular for our computations. 

In 3-dimensional crystallography the crystal classes 
are conventionally not distributed into families but 
into crystal systems. To formulate this concept also in 
an algebraic way, we first define: 

2.8. Definition: A geometric crystal class is called 
holohedral or a holohedry if among the arithmetic crys- 
tal classes belonging to it there is at least one Bravais 
class. 

Note that in contrast to the situation with Bravais 
classes not all matrix groups belonging to a holohedral 
class need be Bravais groups. 

2.9. Definition: Each holohedral crystal class H deter- 
mines a crystalsystem. We say that a (geometric) crystal 
class C belongs to the crystal system of H if each group 
of C is a subgroup of some group of H, but not a sub- 
group of a group of another holohedral geometric class 
of smaller order. 

While by this definition each geometric crystal class 
and hence each arithmetic crystal class is attributed to 
exactly one crystal system, the situation is more com- 
plicated for Bravais types. Conventionally a Bravais 
type B is attributed to a crystal system S if one of the 
arithmetic crystal classes belonging to B belongs to S. 
However, then the same Bravais type may be attributed 
to more than one crystal system. This does not happen 
in  R2, and only once in R3t but is more common in 
Rn for n > 3. We therefore use the concept of crystal 
system only to order the geometric crystal classes for 
which purpose the concept of the system is natural. 

The relations between the main concepts used here 
are illustrated by Fig. 1. 

This work has been kindly supported by the Deut- 
sche Forschungsgemeinschaft. 

* To us this seems to be the main advantage of the concept 
'family'. 

t The 'hexagonal Bravais lattice' belongs to the trigonal as 
well as to the hexagonal crystal system; the rhombohedral  one 
belongs to the trigonal system only. 
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The mathematical background and the computing methods applied to the classification of lattices and 
crystallographic groups of 4-dimensional space R4 are described. 

This paper is a direct continuation of the preceding 
one (Neubilser, Wondratschek & Billow, 1971) to which 
we refer as I. We shall use the definitions explained 
there. In this paper we describe the methods we used 
to derive all Bravais types of lattices of R4 and to order 
these, as well as the arithmetic and geometric classes, by 
means of crystal families and crystal systems. 

Our approach started from Bfilow's (1967; cf  also 
Billow & Neubilser, 1970) determination of the 710 
arithmetic crystal classes of R4, which has since been 
reconfirmed. 

1. The determination of the arithmetic classes of R4 

The computation started from a result of Dade (1965). 
He proved that the maximal finite groups of integral 

4 x 4 matrices fall into 9 classes under transformation 
with integral unimodular matrices and he determined 
one group from each of these classes. We shall call 
these 9 groups the Dade groups of R4. As each finite 
integral 4 x 4 matrix group is contained in a maximal 
one, each arithmetic crystal class is represented by 
at least one of the subgroups of the Dade groups. The 
task of finding all arithmetic crystal classes can there- 
fore be split into two steps: 

(i) Find all subgroups of the 9 Dade groups. 
(ii) Classify the set, so obtained, under transforma- 
tion with integral unimodular matrices. 

The first step was performed using computer pro- 
grams (Felsch & Neubilser, 1963) that determine--  
among other things - all subgroups of a group given 


